The provided Tradingview Pine Script™ code is an Options Greeks Calculator tailored for use on the TradingView platform. It provides real-time analysis and visualization of First Order and Second Order Option Greeks.
List of Option Greeks and Metrics Supported by the Pine Script™ Code:
- Premium: The current market price of the option contract.
- Implied Volatility (IV): The volatility implied by the market price of the option, reflecting the market’s view of the likelihood of changes in the underlying asset’s price.
- Delta (Δ): Measures the rate of change of the option’s price with respect to a $1 change in the underlying asset’s price.
- Gamma (Γ): Represents the rate of change of Delta with respect to changes in the underlying asset’s price, indicating the curvature of the option’s price curve.
- Theta (Θ): Reflects the rate at which the option’s price decays over time, commonly known as time decay.
- Vega (V): Measures the sensitivity of the option’s price to a 1% change in the volatility of the underlying asset.
- Rho (ρ): Indicates the change in the option’s price resulting from a 1% change in the risk-free interest rate.
- Vanna: Captures the sensitivity of Delta to changes in volatility and the sensitivity of Vega to changes in the underlying asset’s price.
- Charm: Measures the rate of change of Delta over time, showing how Delta decays as expiration approaches.
- Vomma: Represents the rate of change of Vega with respect to changes in volatility, indicating how Vega is expected to change as volatility changes.
These Greeks provide comprehensive insights into the option’s sensitivity to various factors such as underlying price movements, volatility changes, time decay, and interest rate fluctuations, as calculated by the Pine Script™ code.
First Order and Second Order Option Greeks – Tradingview Pinescript Code
// This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © algostudio
//@version=5
indicator("Options Greeks Calculator - First Order Vs Second Order Greeks",
shorttitle="Option Greeks",
overlay=false,
dynamic_requests = true,
format=format.price,
precision=4)
// Constants
var float PI = 3.14159265358979
// Input Parameters
underlyingInput = input.symbol(defval="NSE:NIFTY", title="Underlying Symbol", confirm=true)
riskFreeRate = input.float(defval=0.0, title="Risk Free Rate (%)", group="Option Parameters")/100
dividend = input.float(defval=0.0, title="Dividend Yield (%)", group="Option Parameters")/100
// Plot Selection
plotOptions = input.string("Premium", "Select Plot", options=["Premium", "IV", "Delta", "Gamma", "Theta", "Vega", "Rho", "Vanna", "Charm", "Vomma"], group="Plot Settings", confirm=true)
plotColor = input.color(color.yellow, "Plot Color", group="Plot Settings")
plotThickness = input.int(2, "Plot Thickness", minval=1, maxval=4, group="Plot Settings")
// Expiry time inputs
expiryHour = input.int(15, "Expiry Hour (24h)", minval=0, maxval=23, group="Expiry Settings", confirm=true)
expiryMinute = input.int(30, "Expiry Minute", minval=0, maxval=59, group="Expiry Settings", confirm=true)
// Input Variables for Table Display Settings
tablePosition = input.string(defval = "Top Right", title = "Greeks Table Position",
options=["Top Right", "Bottom Right", "Middle Right", "Top Left", "Middle Left"], group="Table Settings")
tableSize = input.string(defval = "Medium", title = "Table Size",
options = ["Small", "Large", "Medium"], group="Table Settings")
showTables = input.bool(true, "Show Tables?", group="Table Settings")
// Error Messages
var string ERROR_NOT_OPTION = "Error: Not an option symbol. Please apply this indicator to an option symbol (e.g., NSE:NIFTY24D28P21500)"
var string ERROR_INVALID_FORMAT = "Error: Invalid option symbol format. Expected format: SYMBOL[YYMMDD][C/P]STRIKE"
var string ERROR_MISSING_STRIKE = "Error: Cannot determine strike price from symbol"
var string ERROR_MISSING_EXPIRY = "Error: Cannot determine expiry from symbol"
// Initialize variables with default values
float marketPrice = 0.0
float impliedVolatility = 0.0
float volatility = 0.0
float deltaValue = 0.0
float gammaValue = 0.0
float thetaValue = 0.0
float vegaValue = 0.0
float rhoValue = 0.0
float vannaValue = 0.0
float charmValue = 0.0
float vommaValue = 0.0
float plotValue = 0.0
// Helper function for rounding to 4 decimals
round4(float val) =>
math.round(val * 10000) / 10000
// Helper function for normal distribution
normDist(z) =>
b1 = 0.31938153
b2 = -0.356563782
b3 = 1.781477937
b4 = -1.821255978
b5 = 1.330274429
p = 0.2316419
c = 0.39894228
abs_z = math.abs(z)
k = 1.0 / (1.0 + p * abs_z)
n = c * math.exp(-z * z / 2.0)
phi = n * k * (b1 + k * (b2 + k * (b3 + k * (b4 + k * b5))))
z < 0 ? phi : 1.0 - phi
// Option Price calculation function
optionPriceBS(float s, float x, float t, float r, float v, float d, bool isCall) =>
d1 = (math.log(s/x) + (r - d + math.pow(v, 2)/2) * t) / (v * math.sqrt(t))
d2 = d1 - v * math.sqrt(t)
float result = 0.0
if isCall
result := s * math.exp(-d * t) * normDist(d1) - x * math.exp(-r * t) * normDist(d2)
else
result := x * math.exp(-r * t) * normDist(-d2) - s * normDist(-d1) * math.exp(-d * t)
result
// Calculate Implied Volatility
calculateIV(bool isCall, float s, float x, float t, float r, float mp, float d) =>
float hval = 3.0
float lval = 0.0
float result = 0.0
if isCall
while (hval - lval > 0.0001)
mid = (hval + lval) / 2
theoreticalPrice = optionPriceBS(s, x, t, r, mid, d, isCall)
if theoreticalPrice > mp
hval := mid
else
lval := mid
else
while (hval - lval > 0.0001)
mid = (hval + lval) / 2
theoreticalPrice = optionPriceBS(s, x, t, r, mid, d, isCall)
if theoreticalPrice > mp
hval := mid
else
lval := mid
result := (hval + lval) / 2
result
// Get spot price from underlying
getSpotPrice() =>
request.security(underlyingInput, timeframe.period, close)
// Calculate days to expiry
getDaysToExpiry(int expiryYear, int expiryMonth, int expiryDay) =>
currentTime = time
expiryTime = timestamp(expiryYear, expiryMonth, expiryDay, expiryHour, expiryMinute)
float timeToExpiry = (expiryTime - currentTime) / (1000 * 3600 * 24)
float daysRemaining = math.floor(timeToExpiry)
float hoursRemaining = math.floor((timeToExpiry - daysRemaining) * 24)
[math.max(timeToExpiry, 0.0), daysRemaining, hoursRemaining]
// Symbol parsing function with runtime error
parseOptionSymbol() =>
bool isCall = false
float strikePrice = 0.0
int expYear = 0
int expMonth = 0
int expDay = 0
bool hasError = false
string errorMsg = ""
symbol = syminfo.ticker
// Remove prefix if present
if str.contains(symbol, ":")
symbol := str.substring(symbol, str.pos(symbol, ":") + 1)
// Find the option type (C or P)
int optionTypePos = -1
for i = str.length(symbol) - 1 to 0
char = str.substring(symbol, i, i + 1)
if char == "C" or char == "P"
optionTypePos := i
break
if optionTypePos == -1
runtime.error(ERROR_NOT_OPTION)
// Determine option type
optionType = str.substring(symbol, optionTypePos, optionTypePos + 1)
isCall := optionType == "C"
// The date should be 6 characters before the option type
if optionTypePos < 6
runtime.error(ERROR_INVALID_FORMAT)
dateStart = optionTypePos - 6
dateStr = str.substring(symbol, dateStart, dateStart + 6)
// Extract strike price (everything after option type)
strikeStr = str.substring(symbol, optionTypePos + 1)
// Handle strike price
float strikeNum = str.tonumber(strikeStr)
if na(strikeNum)
runtime.error(ERROR_MISSING_STRIKE)
strikePrice := strikeNum
// Parse date components
if str.length(dateStr) != 6
runtime.error(ERROR_INVALID_FORMAT)
yearStr = str.substring(dateStr, 0, 2)
monthStr = str.substring(dateStr, 2, 4)
dayStr = str.substring(dateStr, 4, 6)
float yearNum = str.tonumber(yearStr)
float monthNum = str.tonumber(monthStr)
float dayNum = str.tonumber(dayStr)
if na(yearNum) or na(monthNum) or na(dayNum)
runtime.error(ERROR_MISSING_EXPIRY)
expYear := 2000 + int(yearNum)
expMonth := int(monthNum)
expDay := int(dayNum)
[isCall, strikePrice, expYear, expMonth, expDay, hasError, errorMsg]
// Greeks calculations
delta(float spotPrice, float strikePrice, float annualizedTime, float volatility, bool isCall) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float result = 0.0
if isCall
result := normDist(d1)
else
result := normDist(d1) - 1
round4(result)
gamma(float spotPrice, float strikePrice, float annualizedTime, float volatility) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float nd1 = math.exp(-(d1*d1) / 2) / math.sqrt(2 * PI)
float result = nd1 / (spotPrice * (volatility * math.sqrt(annualizedTime)))
round4(result)
theta(float spotPrice, float strikePrice, float annualizedTime, float volatility, bool isCall) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float d2 = d1 - volatility * math.sqrt(annualizedTime)
float nd1 = math.exp(-(d1*d1) / 2) / math.sqrt(2 * PI)
float nd2 = normDist(d2)
float theta = 0.0
if isCall
theta := - (((spotPrice * volatility * nd1) / (2 * math.sqrt(annualizedTime))) - (riskFreeRate * strikePrice * math.exp(-riskFreeRate * annualizedTime) * nd2))
else
theta := - (((spotPrice * volatility * nd1) / (2 * math.sqrt(annualizedTime))) + (riskFreeRate * strikePrice * math.exp(-riskFreeRate * annualizedTime) * (1- nd2)))
float result = 0.0
if annualizedTime < float(1) / 365
result := theta * annualizedTime
else
result := theta / 365
round4(result)
vega(float spotPrice, float strikePrice, float annualizedTime, float volatility) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float nd1 = math.exp(-(d1*d1) / 2) / math.sqrt(2 * PI)
float vegaOut = 0.01 * spotPrice * math.sqrt(annualizedTime) * nd1 // Changed from result to vegaOut
round4(vegaOut)
// New First Order Greek - Rho calculation
rho(float spotPrice, float strikePrice, float annualizedTime, float volatility, bool isCall) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float d2 = d1 - volatility * math.sqrt(annualizedTime)
float result = 0.0
if isCall
result := strikePrice * annualizedTime * math.exp(-riskFreeRate * annualizedTime) * normDist(d2)
else
result := -strikePrice * annualizedTime * math.exp(-riskFreeRate * annualizedTime) * normDist(-d2)
round4(result)
// Second Order Greeks calculations
vanna(float spotPrice, float strikePrice, float annualizedTime, float volatility) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float d2 = d1 - volatility * math.sqrt(annualizedTime)
float nd1 = math.exp(-(d1*d1) / 2) / math.sqrt(2 * PI)
float result = -nd1 * d2 / volatility
round4(result)
charm(float spotPrice, float strikePrice, float annualizedTime, float volatility, bool isCall) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float d2 = d1 - volatility * math.sqrt(annualizedTime)
float nd1 = math.exp(-(d1*d1) / 2) / math.sqrt(2 * PI)
float result = 0.0
if isCall
result := -nd1 * (2*(riskFreeRate-dividend)*annualizedTime - d2*volatility*math.sqrt(annualizedTime))/(2*annualizedTime*volatility*math.sqrt(annualizedTime))
else
result := nd1 * (2*(riskFreeRate-dividend)*annualizedTime - d2*volatility*math.sqrt(annualizedTime))/(2*annualizedTime*volatility*math.sqrt(annualizedTime))
round4(result)
vomma(float spotPrice, float strikePrice, float annualizedTime, float volatility) =>
float d1 = (math.log(spotPrice/strikePrice) + (riskFreeRate - dividend + math.pow(volatility, 2)/2) * annualizedTime) / (volatility * math.sqrt(annualizedTime))
float d2 = d1 - volatility * math.sqrt(annualizedTime)
float tempVega = vega(spotPrice, strikePrice, annualizedTime, volatility) // Changed from vegaValue to tempVega
float result = tempVega * d1 * d2 / volatility
round4(result)
// Function to Get Table Position
gettablePos(pos) =>
switch pos
"Top Right" => position.top_right
"Bottom Right" => position.bottom_right
"Middle Right" => position.middle_right
"Top Left" => position.top_left
"Middle Left" => position.middle_left
// Function to get the Table Size
gettableSize(size) =>
switch size
"Small" => size.small
"Large" => size.large
"Medium" => size.normal
// Creating Tables with improved styling
var table infoTable = table.new(position.bottom_left, 2, 8, // Changed from 6 to 8 rows
border_width=2,
border_color=color.gray,
frame_color=color.gray,
frame_width=2)
var table firstOrderGreeks = table.new(position.top_right, 2, 6, // Changed from gettablePos(tablePosition)
border_width=2,
border_color=color.gray,
frame_color=color.gray,
frame_width=2)
var table secondOrderGreeks = table.new(position.bottom_right, 2, 5, // Keep this at top right
border_width=2,
border_color=color.gray,
frame_color=color.gray,
frame_width=2)
// Function to plot Info Table
plotInfoTable(table tbl, string tblSize, bool isCall, float strikePrice, float spotPrice, string underlyingInput, float daysRemaining, float hoursRemaining, float premium, float iv) =>
if showTables
table.cell(tbl, 0, 0, "Symbol Info",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 0, "Value",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 0, 1, "Type",
bgcolor=color.rgb(0, 51, 102), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 1, isCall ? "Call" : "Put",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 0, 2, "Strike",
bgcolor=color.rgb(0, 51, 102), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 2, str.tostring(strikePrice),
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 0, 3, "Spot Price",
bgcolor=color.rgb(0, 51, 102), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 3, str.tostring(spotPrice, "#.##"),
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 0, 4, "Premium",
bgcolor=color.rgb(0, 51, 102), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 4, str.tostring(premium, "#.##"),
bgcolor=color.black, text_color=color.yellow, text_size=tblSize)
table.cell(tbl, 0, 5, "IV %",
bgcolor=color.rgb(0, 51, 102), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 5, str.tostring(iv, "#.##"),
bgcolor=color.black, text_color=color.yellow, text_size=tblSize)
table.cell(tbl, 0, 6, "Underlying",
bgcolor=color.rgb(0, 51, 102), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 6, underlyingInput,
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 0, 7, "Time to Expiry",
bgcolor=color.rgb(0, 51, 102), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 7, str.tostring(daysRemaining, "#") + "d " + str.tostring(hoursRemaining, "#") + "h",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
// Function to plot First Order Greeks Table
plotFirstOrderGreeks(tbl, tblSize) =>
if showTables
table.cell(tbl, 0, 0, "First Order Greeks",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 0, "Value",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 0, 1, "Delta",
bgcolor=color.rgb(0, 51, 0), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 1, str.tostring(deltaValue, "#.####"),
bgcolor=color.black, text_color=color.lime, text_size=tblSize)
table.cell(tbl, 0, 2, "Theta",
bgcolor=color.rgb(51, 0, 51), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 2, str.tostring(thetaValue, "#.####"),
bgcolor=color.black, text_color=color.purple, text_size=tblSize)
table.cell(tbl, 0, 3, "Vega",
bgcolor=color.rgb(51, 25, 0), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 3, str.tostring(vegaValue, "#.####"),
bgcolor=color.black, text_color=color.orange, text_size=tblSize)
table.cell(tbl, 0, 4, "Rho",
bgcolor=color.rgb(0, 25, 51), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 4, str.tostring(rhoValue, "#.####"),
bgcolor=color.black, text_color=color.blue, text_size=tblSize)
// Function to plot Second Order Greeks Table
plotSecondOrderGreeks(tbl, tblSize) =>
if showTables
table.cell(tbl, 0, 0, "Second Order Greeks",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 0, "Value",
bgcolor=color.black, text_color=color.white, text_size=tblSize)
table.cell(tbl, 0, 1, "Gamma",
bgcolor=color.rgb(51, 0, 0), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 1, str.tostring(gammaValue, "#.####"),
bgcolor=color.black, text_color=color.red, text_size=tblSize)
table.cell(tbl, 0, 2, "Vanna",
bgcolor=color.rgb(51, 25, 51), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 2, str.tostring(vannaValue, "#.####"),
bgcolor=color.black, text_color=color.fuchsia, text_size=tblSize)
table.cell(tbl, 0, 3, "Charm",
bgcolor=color.rgb(25, 51, 25), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 3, str.tostring(charmValue, "#.####"),
bgcolor=color.black, text_color=color.green, text_size=tblSize)
table.cell(tbl, 0, 4, "Vomma",
bgcolor=color.rgb(51, 51, 25), text_color=color.white, text_size=tblSize)
table.cell(tbl, 1, 4, str.tostring(vommaValue, "#.####"),
bgcolor=color.black, text_color=color.yellow, text_size=tblSize)
// Main calculation block
[isCall, strikePrice, expYear, expMonth, expDay, hasError, errorMsg] = parseOptionSymbol()
spotPrice = getSpotPrice()
[timeToExpiry, daysRemaining, hoursRemaining] = getDaysToExpiry(expYear, expMonth, expDay)
annualizedTime = timeToExpiry/365.0
// Calculate Greeks and update tables
marketPrice := close
impliedVolatility := round4(calculateIV(isCall, spotPrice, strikePrice, annualizedTime, riskFreeRate, marketPrice, dividend) * 100)
volatility := impliedVolatility/100
deltaValue := delta(spotPrice, strikePrice, annualizedTime, volatility, isCall)
gammaValue := gamma(spotPrice, strikePrice, annualizedTime, volatility)
thetaValue := theta(spotPrice, strikePrice, annualizedTime, volatility, isCall)
vegaValue := vega(spotPrice, strikePrice, annualizedTime, volatility)
rhoValue := rho(spotPrice, strikePrice, annualizedTime, volatility, isCall)
vannaValue := vanna(spotPrice, strikePrice, annualizedTime, volatility)
charmValue := charm(spotPrice, strikePrice, annualizedTime, volatility, isCall)
vommaValue := vomma(spotPrice, strikePrice, annualizedTime, volatility)
// Calculate plot value
plotValue := switch plotOptions
"Premium" => marketPrice
"IV" => impliedVolatility
"Delta" => deltaValue
"Gamma" => gammaValue
"Theta" => thetaValue
"Vega" => vegaValue
"Rho" => rhoValue
"Vanna" => vannaValue
"Charm" => charmValue
"Vomma" => vommaValue
=> marketPrice // default case
// Update tables
if barstate.islast and not hasError
plotInfoTable(infoTable, gettableSize(tableSize), isCall, strikePrice, spotPrice, underlyingInput, daysRemaining, hoursRemaining, marketPrice, impliedVolatility)
plotFirstOrderGreeks(firstOrderGreeks, gettableSize(tableSize))
plotSecondOrderGreeks(secondOrderGreeks, gettableSize(tableSize))
// Main plot
plot(plotValue, color=plotColor, linewidth=plotThickness)
Key Components of the Code
- Input Parameters:
- Underlying Symbol: The asset on which the option is based.
- Risk-Free Rate: The annual risk-free interest rate used in calculations.
- Dividend Yield: The annual dividend yield of the underlying asset (set to zero in this case).
- Plot Settings: Options to select which Greek or parameter to plot, along with customization of colors and thickness.
- Expiry Settings: Inputs for specifying the expiration date and time of the option.
- Table Settings: Configurations for displaying information tables on the chart.
- Symbol Parsing:
- The code parses the option’s ticker symbol to extract whether it’s a call or put, the strike price, and the expiration date.
- It handles errors gracefully, providing informative messages if the symbol format is incorrect.
- Market Data Retrieval:
- Spot Price: Obtains the current price of the underlying asset.
- Time to Expiry: Calculates the remaining time until the option expires, expressed in years for the formulas.
- Calculations:
- Option Price: Uses the Black-Scholes formula to calculate the theoretical price of the option.
- Implied Volatility: Determines the implied volatility by finding the volatility input that makes the theoretical price equal to the market price.
- First Order Greeks: Computes Delta, Gamma, Theta, Vega, and Rho using the standard formulas.
- Second Order Greeks: Calculates Vanna, Charm, and Vomma to assess higher-order sensitivities.
- Visualization:
- Plotting: Allows the user to plot any of the calculated Greeks or the option’s premium directly on the chart.
- Tables: Displays detailed information about the option and its Greeks in tables positioned on the chart for easy reference.
- User Interaction and Customization:
- Users can customize various aspects such as the plot color, thickness, table position, and size.
- The code adapts to the user’s inputs, recalculating and updating the display in real-time.
How the Code Works
Initialization:
- Sets up constants and variables.
- Defines helper functions for calculations and formatting.
Data Processing:
- Parses the option symbol to extract necessary details.
- Retrieves the spot price and calculates time to expiry.
Calculations:
- Computes the theoretical option price and implied volatility.
- Calculates each Greek using the appropriate mathematical formulas.
Output Generation:
- Updates the tables with the latest calculations.
- Plots the selected Greek or parameter on the chart.
Error Handling:
- Includes checks to ensure that the calculations are only performed when the necessary data is available and valid.
- Provides error messages to guide the user if there’s an issue with the input data.
Understanding the Greeks is crucial for anyone involved in options trading, as they provide valuable insights into the risks and potential movements of option prices. The Pine Script™ code discussed in this blog post offers a powerful tool for calculating and visualizing both First Order and Second Order Greeks directly within the TradingView platform.
By integrating these calculations into your trading workflow, you can make more informed decisions, better manage risk, and enhance your overall trading strategy. Whether you’re a seasoned trader or just starting, leveraging tools like this can significantly improve your understanding and execution in the options market.