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Abstract 
We develop the concept of “dragon-kings” corresponding to meaningful outliers, which are found to coexist with power laws in the 
distributions of event sizes under a broad range of conditions in a large variety of systems. These dragon-kings reveal the existence of 
mechanisms of self-organization that are not apparent otherwise from the distribution of their smaller siblings. We present a generic 
phase diagram to explain the generation of dragon-kings and document their presence in six different examples (distribution of city 
sizes, distribution of acoustic emissions associated with material failure, distribution of velocity increments in hydrodynamic 
turbulence, distribution of financial drawdowns, distribution of the energies of epileptic seizures in humans and in model animals, 
distribution of the earthquake energies). We emphasize the importance of understanding dragon-kings as being often associated with 
a neighborhood of what can be called equivalently a phase transition, a bifurcation, a catastrophe (in the sense of René Thom), or a 
tipping point. The presence of a phase transition is crucial to learn how to diagnose in advance the symptoms associated with a 
coming dragon-king. Several examples of predictions using the derived log-periodic power law method are discussed, including 
material failure predictions and the forecasts of the end of financial bubbles.    
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1. Introduction 
 
Systems with a large number of mutually interacting 
parts, often open to their environment, self-organize 
their internal structure and their dynamics with novel 
and sometimes surprising macroscopic (“emergent”) 
properties. The complex system approach, which 
involves “seeing” inter-connections and relationships, 
i.e., the whole picture as well as the component parts, 
is nowadays pervasive in modern control of 
engineering devices and business management. It also 
plays an increasing role in most of the scientific 
disciplines, including biology (biological networks, 
ecology, evolution, origin of life, immunology, 
neurobiology, molecular biology, etc), geology 
(plate-tectonics, earthquakes and volcanoes, erosion 
and landscapes, climate and weather, environment, 
etc.), economy and social sciences (including 
cognition, distributed learning, interacting agents, etc.). 
There is a growing recognition that progress in most 
of these disciplines, in many of the pressing issues for 
our future welfare as well as for the management of 
our everyday life, will need such a systemic complex 
system and multidisciplinary approach. This view 
tends to replace the previous “analytical” approach, 
consisting of decomposing a system in components, 
such that the detailed understanding of each 
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component was believed to bring understanding in the 
functioning of the whole. 

 One of the most remarkable emergent properties 
of natural and social sciences is that they are 
punctuated by rare large events, which often dominate 
their organization and lead to huge losses. This 
statement is usually quantified by heavy-tailed 
distributions of event sizes. Here, we present evidence 
that there is “life” beyond power laws: we introduce 
the concept of dragon-kings to refer to the existence of 
transient organization into extreme events that are 
statistically and mechanistically different from the rest 
of their smaller siblings. This realization opens the 
way for a systematic theory of predictability of 
catastrophes, which is outlined here and illustrated. 

Section 2 reviews the evidence for power law 
distributions in many natural and social systems. 
Section 3 presents the limits of this power law 
description and documents the presence of 
dragon-kings in six different systems. Section 4 
develops the concept that dragon-kings exhibit a 
degree of predictability, because they are associated 
with mechanisms expressed differently than for the 
other events. Often, dragon-kings are associated with 
the occurrence of a phase transition, bifurcation, 
catastrophe, tipping point, whose emergent organization 
produces useful precursors. A variety of concrete 
examples are described, especially on the application of 
the diagnostic of financial bubbles and the prediction of 
their demise. Section 5 concludes. 
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2. Power law distributions of large event sizes in 
natural and social systems 
 

Probability distribution functions with a power law 
dependence as a function of event or object sizes seem 
to be ubiquitous statistical features of natural and 
social systems. In complex systems, the appearance of 
power law distributions is often thought to be the 
signature of self-organizing mechanisms at the origin 
of a hierarchy of scales (see Sornette [1,2] for a 
general overview of power law distributions). 

A probability distribution function P(x) exhibiting 
a power law tail is such that  

 
for large x, possibly up to some large limiting cut-off. 
The exponent µ (also referred to as the “index”) 
characterizes the nature of the tail: for µ<2, one speaks 
of a “heavy tail” for which the variance is theoretically 
not defined.  

The following two sub-sections provide a series of 
figures illustrating the occurrence of power law tails in 
both natural and social systems. 

 
2.1. Power law distributions in natural systems 

 
 

 
Fig.1 Distribution of earthquake seismic moments M0 (a proxy 
roughly proportional to energy) in a large seismic-tectonic 
region such as California, USA. The straight line in log-log 
scale qualifies a power law distribution with exponent µ ≈2/3. 
 
 

 
Fig.2 Distribution of earthquake seismic rates (number of 
events per day and per grid box) in Southern California, USA. 
The grid boxes are 5km x 5km in size. The straight line in 
log-log scale qualifies a power law distribution with exponent µ 
≈2.5. The continuous red line is the best fit with a Poisson law, 
which is found completely off the data. Reproduced from 
Saichev and Sornette [3,4].  
 
 
 

 
Fig.3 Distribution of meteorites and debris size orbiting around 
the Earth at different altitudes of 950km and 1500km above 
ground. The debris are man-made and are the remnants of 
rockets and satellites launched since the Soviet opened the 
space age with the launch of Sputnik I. The distributions are 
given in terms of the number of objects of a given size in 
centimeter crossing one square meter per year. The straight line 
in log-log scale qualifies a power law distribution with 
exponent µ ≈2.75. Reproduced from Sornette [2]. 
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Fig.4 Distribution of areas of landslides triggered by the Jan. 17, 
1994 Northridge earthquake, California, USA. The straight line 
in log-log scale qualifies a power law distribution with 
exponent µ ≈2/3. Reproduced from Turcotte [5]. 
 
 
 
 

 
Fig.5 Distribution areas of forest fires and wildfires in the 
United States and Australia. (A) 4284 fires on U.S. Fish and 
Wildlife Service Lands (1986-1995); (B) 120 fires in the 
western United States (1150-1960); (C) 164 fires in Alaskan 
boreal forests (1990-1991); (D) 298 fires in the ACT 
(1926-1991). The straight line in log-log scale qualifies a power 
law distribution with exponent µ ≈0.3-0.5. Reproduced from 
Malamud et al. [6]. 

 
 

 
Fig.6 The number density N(M) of rain events versus the event 
size M (open circles) on a double logarithmic scale. Events are 
collected in bins of exponentially increasing widths. The 
horizontal position of a data point corresponds to the geometric 
mean of the beginning and the end of a bin. The vertical 
position is the number of events in that bin divided by the bin 
size. To facilitate comparison, the number of events are 
rescaled to annual values by dividing by the fraction of a whole 
year during which the data were collected. The straight line in 
log-log scale qualifies a power law distribution with exponent µ 
≈0.4. Reproduced from Peters and Christensen [7]. 
 
 
 
2.2. Power law distributions in social systems 
 
 

 
Fig.7 Survival distribution of positive (continuous line) and 
negative daily returns (dotted line) of the Dow Jones Industrial 
Average index over the time interval from May 27, 1896 to 
May 31, 2000, which represents a sample size of n=28 415 data 
points. The straight part in the tail in this log-log scale qualifies 
a power law distribution with exponent µ≈3. Reproduced from 
Malevergne et al. [8]. 
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Fig.8 Rank-ordering plot of the revenue as a function of rank 
for the 50 top movies produced in Hollywood studios in terms 
of their revenues for each year from 1977 to 1994. The 
rank-ordering plot gives the same information as the empirical 
survival distribution, which derives from it by inverting the 
axes. The straight part in the tail in this log-log scale qualifies a 
power law distribution with exponent µ≈1.5. Reproduced from 
Sornette and Zajdenweber [9]. 
 
 
 
 

 
Fig.9 Population frequency of estimated health charges: Annual 
charge estimates from a 1998 U.S. national sample of 
non-institutionalized individuals. Data collected as part of the 
1998 Medical Expenditure Panel Survey (MEPS) by the 
Agency for Healthcare Research and Quality. Annual health 
charges (excluding drug costs) ranged from none by 21% of 
participants, to a maximum of over $558,000. The straight part 
in the tail in this log-log scale qualifies a power law distribution 
with exponent µ≈0.6. Reproduced from Rupper [10]. 
 
 
 

 
Fig.10 Frequency–intensity distribution of wars based on the 
Levy [11] tabulation of war intensities. The straight part in the 
tail in this log-log scale qualifies a power law distribution with 
exponent µ≈0.4. Reproduced from Turcotte [5]. 
 
 
 

 
Fig.11 Non-normalized survival distribution (double 
logarithmic scale) of identity theft (ID) losses, constructed 
using the data provided in datalossdb.org/ (06.01.2009), 
respectively for events which have occurred before 2003 (filled 
purple circles), 2004 (empty blue circles), 2005 (green filled 
diamonds), 2006 (orange empty diamonds), 2007 (red squares) 
and the complete data set until December 20, 2007 (black 
crosses). Year after year, the tails of the survival distributions 
have approximately the same slope. The straight black line is 
the fit with a power law µ≈0.7 for number of victims larger that 
the lower threshold u=7. 104. The inset shows the dependence 
of the index µ as a function of u obtained directly from the 
maximum likelihood estimation of the exponent of the power. 
Reproduced from Maillart and Sornette [12]. 
 
 
2.3. The standard view: tail events and black swans 
 
Power law distributions incarnate the notion that 
extreme events are not exceptional events. Instead, 
extreme events should be considered to be rather 
frequent and to result from the same organization 
principle(s) as those generating other events: because 
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they belong to the same statistical distribution, this 
suggests common generating mechanism(s). In this 
view, a great earthquake is just an earthquake that 
started small ... and did not stop; it is inherently 
unpredictable due to its sharing of all the properties 
and characteristics of smaller events (except for its 
size), so that no genuinely informative precursor can 
be identified [13]. If events of large impacts are part of 
a population described by a power law distribution, 
the common wisdom is that there is no way to predict 
them because nothing distinguish them from their 
small siblings: their great sizes and impacts come out 
as surprises, beyond the realm of normal expectations. 
This is the view expounded for instance by Bak and 
co-workers in their formulation of the concept of 
self-organized criticality [14,15]. This is also the 
concept espoused by the “Black Swan Theory” [16], 
which views high-impact rare events as unpredictable. 
 
 
3. Beyond power laws: dragon-king outliers 
 
Are power laws really the whole story? The following 
examples suggest that, in a significant number of 
complex systems, extreme events are even “wilder” 
than predicted by the extrapolation of the power law 
distributions in their tail. Below, we document 
evidence for what can be termed genuine “outliers” or 
even better “kings” [17] or “dragons.”  

According to the definition of the Engineering 
Statistical Handbook [18], “An outlier is an 
observation that lies an abnormal distance from other 
values in a random sample from a population.” It is 
therefore an anomaly, an event to be removed in order 
to obtain reliable statistical estimations. The term 
“outlier” emphasizes the spurious nature of these 
anomalous events, suggesting to discard them as errors, 
or as misleading monsters. 

In contrast, the term “king” has been introduced 
by Laherrère and Sornette [17] to emphasize the 
importance of those events, which are beyond the 
extrapolation of the fat tail distribution of the rest of 
the population. This is in analogy with the sometimes 
special position of the fortune of kings, which appear 
to exist beyond the Zipf law distribution of wealth of 
their subjects, as exemplified by King Buhimol 
Adulyadej (Thailand), Sheikh Khalifa bin Zayed 
al-Nahayan (United Arab Emirates), Sultan Hassanal 
Bolkiah (Brunei), Sheikh Mohammed Bin Rashid 
al-Maktoum (Dubai), Prince Hans Adam II 
(Liechtenstein) , Sheikh Hamad bin Khalifa al-Thani 
(Qatar), King Mohammed VI (Morocco), Prince 
Albert II (Monaco) and so on [19]. I also like to refer 
to these exceptional events as “dragons” to stress that 
we deal with a completely different kind of animal, 
beyond the normal, which extraordinary 
characteristics, and whose presence, if confirmed, has 

profound significance. 
The following sub-sections present empirical 

evidence of the presence and importance of 
dragon-kings in six different systems. A very 
important message is that there is no unique 
methodology to diagnose dragon-kings. One needs a 
battery of tools. Dragon-kings can be observed 
sometimes directly, in the form of obvious breaks or 
bumps in the tail of size distributions as in the 
example of sections 3.1 and 3.2. Or they need the 
construction of novel observables, which are more 
relevant to the dynamics of the system, as in the 
example of section 3.3. Or it is the comparison of 
distributions obtained at different resolution scales that 
allows one to diagnose the existence of a population of 
dragon-kings, as shown in the example of section 3.4. 
Section 3.5 demonstrates yet another mechanism for 
the generation of dragon-kings, found in the strong 
coupling regime of coupled heterogeneous oscillators 
of relaxation. A general phase diagram is presented 
which is tested on the statistics of epileptic seizures. 
Section 3.6 discusses the evidence supporting the 
predictions of the phase diagram for earthquake 
statistics. In this context, the dragon-kings would 
correspond to so-called “characteristic earthquakes.” 
 
3.1. Paris as the dragon-king of the Zipf 
distribution of French city sizes 
 
Since Zipf’s famous book [20], it is well documented 
that the distribution of city sizes (measured by the 
number of inhabitants) is, in many countries, a power 
law with an exponent µ close to 1. This ubiquitous 
regularity is understood as due to the law of 
proportional growth, also called Gibrat’s law (see 
Saichev et al. [21] for a recent in-depth review of 
theories of Zipf’s law and of its deviations). France is 
not an exception as it exhibits a nice power law 
distribution of city sizes... except that its capital, Paris, 
is completely out of range, and constitutes a genuine 
dragon-king with a size several times larger than 
expected from the distribution of the rest of the 
population of cities [17]. This phenomenon is 
represented in Fig.12, showing a rank-ordering plot of 
the sizes S of French cities (raised to the exponent 
c=0.18) as a function of the logarithm of the city rank, 
ordered by descending sizes. This representation 
qualifies a stretched exponential distribution, which 
takes the form ~ exp[-(S/S0)c [4,16]. Malevergne et al. 
[8] have shown that power law distributions are 
embedded as special cases in the large family of 
stretched exponential distributions in the following 
sense: a stretched exponential distribution degenerates 
into a power law distribution with finite exponent µ in 
the limit when the exponent c and the characteristic 
scale S0 becomes much smaller than 1, while 
preserving the finite limit c (u/S0)c ⇒ µ, where u is the 
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lower threshold above with the power law holds. In 
this sense, because the best empirical stretched 
exponential exponent c=0.18 is small, the straight line 
in Fig.12 qualifies a power law distribution, with an 
exponent µ which turns out to be close to 1 (Zipf’s 
law). 
 

 
Fig.12 Rank-ordering plot of the population size of French 
cities as a function of their rank, where sizes are ordered in 
decreasing values. The rank-ordering plot gives the same 
information as the empirical survival distribution, which 
derives from it by inverting the axes. For the ordinate, the city 
size is raised to the power c=0.18 and the abscissa represents 
the logarithm of the rank. A straight line then qualified a 
stretched exponential distribution ~ exp[-(S/S0)c]. See text for 
how this qualifies a power law. The arrow shows the data point 
for Paris. Reproduced from Laherrère and Sornette [17]. 
 
 But the most interesting message of Fig.12 is the 
exceptional deviation of a single point, rank 1, which 
is Paris, the largest city of France. Clearly, this city 
does not abide to Zipf’s power law.  
 Do we want to throw away or neglect this 
information as a spurious outlier? Should we ignore 
the role of Paris in the distribution of French city sizes? 
Actually, as is well known, Paris has played 
historically a crucial role in the development of France, 
and its dragon-king status observed here in the 
statistical distribution of French city sizes is a 
revealing sign of this rich and complex history. We 
will show in the following examples that the 
dragon-king status emerges in general from the 
existence of positive feedbacks, that amplify the role 
of certain events. In the case of Paris, the centralized 
organization for French governments over the past 
centuries has led to its ever-increasing pivotal role. 
London plays a similar dragon-king role with respect 
to the distribution of British city sizes. This evidence 
provides a clue that the existence of a dragon-king is 
associated with special mechanisms of amplifications. 
 
3.2. Global failure as the dragon-king in material 
failure and rupture processes 
 
There is now ample evidence that the distribution of 
damage events, for instance quantified by the acoustic 

emission radiated by micro-cracking in heterogeneous 
systems, is well-described by a Gutenberg-Richter like 
power law [22-25]. But consider now the energy 
released in the final global event rupturing the system 
in pieces, as shown in Fig.13. This release of energy is 
many times larger than the largest ever recorded event 
in the power law distribution before the occurrence of 
the run-away rupture. Material rupture exemplifies the 
co-existence of a power law distribution and a 
catastrophic dragon-king event lying beyond the 
power law. 
 

 
Fig.13 Distribution of acoustic emissions recorded in creep 
experiments of composite materials subjected to a constant 
stress. The different curves correspond to the distributions 
obtained at different epochs along the lifetime of the sample, 
confirming the stability and robustness of the distributions. The 
approximately linear behaviors observed in the tails in this 
log-log plot qualify power law distributions. The vertical red 
arrow illustrates the point made in the text that the final rupture 
associated with a run-away crack releases much more energy, 
as can be heard by the corresponding snapping sound. The plot 
is reproduced from Nechad et al. [26]. 
 
The main positive feedback mechanisms at the origin 
of the run-away dragon-king occurring in material 
failure have been gathered by Sammis and Sornette 
[27]. 
 
3.3. Dragon-kings in the distribution of financial 
drawdowns (or run of losses) 
 
Fig.7 shows the survival distribution of positive 
(continuous line) and negative daily returns (dotted 
line) of the Dow Jones Industrial Average index over 
the time interval from May 27, 1896 to May 31, 2000 
[7]. No dragon-king is apparent and it seems that the 
distribution of large losses and large gains are pure 
asymptotic power laws [28]. 

But this is missing the forest for the tree! Our 
claim is that financial returns defined at fixed time 
scales, say at the hourly, daily, weekly or monthly 
time scales, are revealing only a part of the variability 
of financial time series, while a major risk component 
is gravely missing.  
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Fig.14 A short time series of the DJIA on which the red arrows 
define two drawdowns, while the green arrow defines a drawup. 
There are many possible definitions of drawdowns (and their 
symmetric drawups). Details are given in Johansen and 
Sornette [29-31].  
 

Since we are interested in characterizing the 
statistics of extreme events, to illustrate our claim, 
consider the simplified textbook example of a crash 
that occurs over a period of three days, as a sequence 
of three successive drops of 10% each summing up to 
a total loss of 30%. Now, a 10% market drop, that 
occurs over one day, can be seen in the data of the 
Nasdaq composite index to happen on average once 
every four years. Since there are approximately 250 
trading days in a year, a 10% market drop is thus a 
10-3 probability event. What is the probability for 
observing three such drops in a row? The answer is 
(10-3)3=10-9. Such one-in-one-billion event has a 
recurrence time of roughly 4 million years! Thus, it 
should never be observed in our short available time 
series. However, many crashes of such sizes or larger 
have occurred in the last decades all over the world.  

What is wrong with the reasoning leading to the 
exceedingly small 10-9 probability for such a crash? It 
is the assumption of independence between the three 
losses! In contrast, our claim is that financial crashes 
are transient bursts of dependence between successive 
large losses. As such, they are missed by the standard 
one-point statistics consisting in decomposing the runs 
of losses into elementary daily returns. With some 
exaggeration to emphasize my message, I would say 
that by cutting the mammoth in pieces, we only 
observe mice.  

We thus propose to analyze drawdowns (and 
their symmetrical drawups), because they are better 
adapted to capture the risk perception of investors, and 
therefore better reflect the realized market risks. 
Indeed, we demonstrate below that the distributions of 
drawdowns diagnose efficiently financial crashes, 
which are seen as dragon-kings, i.e., special events 
associated with specific bubble regimes that precede 
them. 
 

 
Fig.15 Distribution of drawdowns D for the Nasdaq Composite 
index, showing several “outliers” in the tail, that qualify as 
dragon-kings. It turns out that these anomalous events are 
precisely associated with documented crashes, such at the crash 
of the ITC bubble in April 2000 or the Oct. 1987 World stock 
market crash. The continuous line is the fit to the stretched 
exponential distribution ~ exp[-(D/D0)c] with an exponent 
c≈0.8. Reproduced from Johansen and Sornette [30]. 
 
Fig.15 show the distribution of drawdowns obtained 
from the Nasdaq composite index over a 20-year 
period, which includes several great crashes shown by 
the arrow. As analyzed carefully by Johansen and 
Sornette [29-32], about 99% of the drawdowns can be 
represented nicely by a common distribution, which 
turns out to have a tail slightly fatter than an 
exponential. And the remaining few events have been 
found to be statistically different: the hypothesis that 
they belong to the same distribution as 99% of the 
population of the other drawdowns is rejected at the 
99.9% confidence level [32,33]. Fig. 16 presents 
further evidence for 30 individual US companies of 
the existence of dragon-kings in the distribution of 
drawdowns (run of losses) and drawups (runs of 
gains). 

 
Fig.16 Same as Fig 15 for 30 major US companies. This figure 
shows in addition the distribution of drawups, i.e., runs of gains, 
depicted on the right side of the peak. The drawdown/drawup 
distribution of each company has been scaled by its 
corresponding scale factor D0 defined in the stretched 
exponential fit mentioned in Fig.15, so as to be able to 
superimpose the 30 distribution functions. The collapse of the 
30 curves is good for the bulk but fails in the tails, where 
dragon-kings can be observed. 
 
The evidence of dragon-kings reported by Johansen 
and Sornette [29-33] encompasses exchange markets 
(US dollar against the Deutsch Mark and against the 
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Yen), the major world stock markets, the U.S. and 
Japanese bond markets and commodity markets. The 
results have been found robust with respect to change 
in various measures of drawdowns, in particular which 
allow for a certain degree of fuzziness in the definition 
of cumulative losses [31,32].  

Johansen and Sornette [31] have found that 
two-thirds of the dragon-kings identified in the 
distribution of drawdowns are actually stock market 
crashes, which were preceded by large bubbles. This 
has led them to build a theory [33-35] in which 
crashes are seen as the possible end of a bubble regime, 
associated with various positive feedback mechanisms 
that lead to faster-than-exponential unsustainable 
growth regime. The mechanisms responsible for 
positive feedbacks include portfolio insurance trading, 
option hedging, momentum investment and 
imitation-based herding. 

  
3.4. Dragon-king events in the distribution of 
turbulent velocity fluctuations. 
 
Until now, we have emphasized that dragon-kings can 
be identified as extreme outliers in the tail of the 
distribution of event sizes, and correspond to some 
kind of break or bump. Actually, dragon-kings do not 
always lead to this diagnostic and other measures are 
necessary to identify their presence.  

This point is well illustrated in shell models of 
turbulence, that are believed to capture the essential 
ingredient of these flows, while being amenable to 
quantitative analysis. Such shell models replace the 
three-dimensional spatial domain by a series of 
uniform onion-like spherical layers with radii 
increasing as a geometrical series 1, 2, 4, 8, ... , 2n and 
communicating mostly with nearest neighbors. The 
quantity of interest is the distribution of velocity 
variations between two instants at the same position or 
between two points simultaneously. L'vov et al. [36] 
have shown that they could collapse the distribution 
function of velocity fluctuations for different scales 
only for the small velocity fluctuations, while no 
scaling held for large velocity fluctuations, as shown 
in Fig. 17.  

Fig.17 suggests that the distributions of velocity 
fluctuations are composed of two regions, a part 
corresponding to so-called normal scaling and a 
domain of extreme events. The extreme events can 
actually be visualized directly as they correspond to 
intense peaks propagating coherently (like solitons) 
over several shell layers with a characteristic bell-like 
shape, approximately independent of their amplitude 
and duration (up to a rescaling of their size and 
duration). The two coexisting populations correspond 
to “characteristic” velocity pulses decorating 
incoherent scale-invariant velocity fluctuations. 

 

 
Fig.17 Distribution of the square of the velocity in three 
different shells, corresponding to three different spatial scales. 
The hypothesis, that there are no outliers, is tested here by 
collapsing the distributions for the three shown layers. While 
this is possible for small velocities, the tails of the distributions 
for large events are very different in the three shells, indicating 
that extreme fluctuations belong to a different class of their own. 
Reproduced from L'vov et al. [36]. 
 

This example emphasizes that the diagnostic of 
dragon-kings requires different methods adapted to the 
specific problem. Here, the identification of the 
dragon-kings relies on the comparison between 
distributions of event sizes obtained at different 
resolution scales.  
 
3.5. Dragon-kings in distributions of epileptic 
seizures associated with the strong coupling 
synchronized regime 
 

Resulting from a neurological disorder that 
affects 60 million humans worldwide, epileptic 
seizures are typically associated with marked 
paroxysmal increases in the amplitude or rhythmicity 
of neuronal oscillations which, in a large number of 
subjects, begin in a discrete region of the brain, but 
may eventually spread to engulf the entire brain. 

Osorio et al. [37,38] have recently reported that 
the statistics of epileptic seizures in human subjects 
and in animal models closely resembles that observed 
for earthquakes: power laws govern the distributions 
of seizure energies and of recurrence times between 
events; moreover, the rates of seizures prior and 
posterior to a seizure follow respectively the so-called 
inverse and direct Omori power laws.  

The close correspondence in four different 
statistics observed between seizures and earthquakes 
can be traced conceptually [37,38] to the fact that both 
types of events are generated by systems composed of 
interacting (coupled) relaxation threshold oscillators. 
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Fig.18 Three examples of coupled oscillators which tend to 
exhibit the phenomenon of synchronization. The upper left 
panel represents the famous historical example of two clocks 
coupled via the vibrations emitted from their pendula and 
transmitted through the wall on which they were fixed, and 
which led Huygens to discover the phenomenon of 
synchronization of oscillators (clocks). The figure on the right 
shows a tree covered with male fireflies in Thailand, which 
synchronize their light signal under the mutual coupling via 
perception of neighbors flashing (Reproduced from Buck and 
Buck [39]). The bottom left panel represents a model of seismic 
faults that are coupled via elastic stresses. This model was 
studied by Sornette et al. [40] and led to propose the general 
phase diagram shown in Fig.20.  
 

 
Fig.19 Distribution P(J) of flux amplitudes at the right border of 
system described as a Landau-Ginzburg model sandpile. The 
model uses a continuous framework with a noisy nonlinear 
diffusion equation controlling the space-time evolution of the 
control parameter (slope of the sandpile), which is coupled to 
the order-parameter (state of rolling of sand grains) described 
by the normal form of a sub-critical bifurcation. χ/α is the ratio 
of the two characteristic time scales of the problem, the time 
scale associated with sand diffusion over the time scale of the 
transition from static to rolling described by the order 
parameter. The amplitude n of the driving noise corresponds to 
the small noise regime. Reproduced from Gil and Sornette [41]. 
 
A generic phase diagram [40] shown in Fig.19 depicts 
the main different regimes exhibited by systems made 
of heterogeneous coupled threshold oscillators, such 
as sandpile models [41] (see Fig.19), integrate-and-fire 
oscillators [42], financial market models [43], 
Burridge-Knopoff block-spring models [44] and 
earthquake-fault models [45]: a power law regime 
(probably self-organized critical) (Fig.20, right lower 

half) is co-extensive with one of synchronization with 
characteristic size events (Fig.20, upper left half). 
Synchronization herein refers to a coherent dynamics 
of coupled oscillators, and does not necessarily require 
unison or simultaneous beating.  

The appearance of characteristic dragon-king 
events in the distribution of forest fires is also 
characteristic of forest-fire cellular automata models in 
the limit where the sparking frequency goes to zero 
(see the review and figures in section 4 in Turcotte 
[5]). Bumps in the distribution of large returns occur 
when a measure of coupling between investors 
increases above some critical threshold [43].  
 

 
Fig.20 Qualitative phase diagram illustrating the effect of 
changes in coupling strength (y-axis) and heterogeneity (x-axis) 
on the behavior of systems (such as the brain and the Earth 
crust), composed of interacting threshold oscillators (only 
changes in coupling were investigated in animal models for 
epileptic seizures [37,38]). Marked increases in excitatory 
coupling (high 3-MPA dose) drive the system towards the 
synchronized regime tagged by the dragon-king. Slight 
increases in coupling (low 3-MPA dose) drive the system 
towards the power law regime indicative of self-organized 
criticality, with the representative black swan icon. Reproduced 
from Sornette [45] and Osorio et al. [38]. 
 

As shown in this diagram, when coupling is weak 
(and/or heterogeneity is strong), the power law regime 
prevails (self-organized criticality (SOC) regime); as 
the coupling strength increases (and/or heterogeneity 
decreases), the systems moves towards the 
synchronization regime and events occurs periodically. 
The black swan cartoon stresses the fact that, in the 
SOC regime, the extreme events are no different from 
their smaller siblings, making the former 
unpredictable. This is the power law regime described 
in section 2.3. In contrast, the dragon-king icon 
stresses the fact that the extreme events occurring in 
the synchronized regime are different for the vast 
majority of the population, i.e., they constitute 
anomalies, in the sense illustrated by the different 
examples shown in the present section 3.  
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Fig.21 Top-left panel: distribution of seizure energies; top-right 
panel: superimposed epoch analysis of seizures to test for the 
existence in seizures of “aftershocks” (Omori-like) and 
“foreshocks” (inverse Omori-like law); bottom-left panel: 
distribution of inter-seizure waiting times; bottom-right panel: 
conditional average waiting time till the next seizures as a 
function of the time spent since the last event. These statistics 
are obtained for rats treated with a convulsant substance 
(3-MPA). Reproduced from Osorio et al. [38]. 
 

The generic phase diagram shown in Fig.20 leads 
to the prediction that, if one can control the degree of 
heterogeneity and/or the level of coupling between the 
coupled threshold oscillators, one should be able to 
observe a change of regime from SOC to synchronized 
or vice-versa. While one cannot easily manipulate 
either parameter at the scale of the Earth crust, one can 
control the level of coupling for seizures, taking as a 
proxy for it the amount of epileptogenic substances 
injected in animals. This was done by Osorio et al. [38] 
who tested, in an animal seizure model, the 
earthquake-driven hypothesis that power law statistics 
co-exist with characteristic scales, as coupling 
between constitutive elements increases towards the 
synchronization regime.  

Specifically, the seizure energy distribution of 9 
rats treated with relatively low 3-MPA convultant 
doses, so as to only cause a moderate increase in 
excitatory neuronal coupling (relative to untreated 
rats), a state that corresponds to the weak coupling 
power regime (lower half, Fig.20) of the generic phase 
diagram, follows a power law distribution. In contrast, 
the seizure energy distribution of 19 rats that were 
treated with maximally tolerable (for viability) 
steady-state brain concentrations of 3-MPA, a state 
that corresponds to the strong coupling regime (Fig.20, 
upper half), had power law behavior (2 decades on the 
x- and 3 on the y-axis), coextensive with characteristic 
scales (Fig. 21, left upper panel). High 3-MPA 
concentrations in brain induced very frequent, 
prolonged seizures, that violated the linear regime in 
log-log scale, forming a “shoulder” (arrow, Fig.21 left 
upper panel), indicative of a characteristic seizure size. 

Quasi-periodic behavior is also clearly seen in the 
seizure “foreshock/aftershock” plots (Fig.21 right 
upper panel) in the shape of regularly spaced 
oscillations “decorating” the inverse and direct Omori 
laws. The distribution of inter-seizure intervals also 
exhibits a clear characteristic time scale (arrow, Fig.21 
lower left panel). Correspondingly, the average 
conditional waiting time (Fig.21 right lower panel) is 
also highly suggestive of quasi-periodic behavior 
superimposed on some large waiting time occurrences. 

These results of manipulating the strength of 
excitatory inter-neuronal coupling with 3-MPA 
furnishes evidence in support of the concepts 
illustrated in the generic phase diagram (Fig.20). 
Modest increases in coupling strength manifest as 
scale-free events, which are likely the expression of 
SOC (or perhaps better expressed as “critical 
asynchronization” [46]) while marked increases 
generate events with characteristic scales (i.e., 
periodic), advocating yet another prediction: Seizures 
with characteristic scales should also be observable in 
humans, as their epileptogenic brain explores the 
strong excitatory coupling state. This prediction has 
been confirmed by Osorio et al. [38] (not shown here). 

This buttresses the argument that, in animals and 
humans, scale-free is not the only behavior of systems 
populated by relaxation threshold oscillators (neurons 
in this case). In particular, increases in interneuronal 
excitatory coupling generate characteristic scale 
seizures regimes that co-exist in space-time with 
scale-free ones. More generally, the theory underlying 
the correspondence between seizures and earthquakes 
implies that wide spectra of different dynamic regimes 
are possible for systems such as the brain’s cortex and 
the earth’s crust. These regimes could correspond to 
critical asynchrony/self-organized criticality [46], 
clustering, quasi-periodicity, and/or synchronization, 
depending on the convulsant concentration, its rate of 
change, and other physico-chemical changes in the 
neuropil (engendered by SZ) that may be likened to 
changes in soil structure/composition/water content 
associated with earthquakes. 
 
3.6. Gutenberg-Richter law and characteristic 
earthquakes. 
 
As mentioned above, earthquakes can be thought of as 
relaxation events of coupled heterogeneous faults, 
each fault acting as a threshold oscillator of relaxation 
under the influence of an overall slow tectonic loading. 
Given the analogy between earthquakes and seizures, 
the results, predicted by the phase diagram presented 
in Fig.20 and verified on strongly “coupled” rats’ 
brains, suggest extrapolating from seizures to 
earthquakes. Specifically, Osorio et al. [38] have 
suggested that the controversial characteristic 
earthquake hypothesis [47-52] could correspond to a 
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model of seismicity that should be observed only 
when coupling between faults is strong and 
heterogeneity is weak.  
 

 

 
Fig.22 Top panel: distribution of earthquake magnitudes in a 
thin strip around the San Andreas fault in California. Bottom 
left and right panels: same as the top panel for the 
Newport-Inglewood-Rose Canyon fault and the 
Whittier-Elsinore fault, respectively. The characteristic 
earthquakes (dragon-kings) would be associated with the 
clusters, which are visibly above the extrapolation of the 
Gutenberg-Richter distribution calibrated on the smaller events. 
Reproduced from Wesnousky [49]. 
 

Testing for the dragon-king characteristic 
earthquake is difficult in the seismo-tectonic context, 
because of the difficulties with defining 
unambiguously the spatial domain of influence of a 
given fault over which the relevant statistics should be 
defined. The researchers who have delineated a spatial 
domain surrounding a clearly mapped large fault claim 
to find a Gutenberg-Richter distribution up to a large 
magnitude region characterized by a bump or 
anomalous rate of large earthquakes, as illustrated in 
Fig.22. These large “characteristic” earthquakes have 
rupture lengths comparable with the fault length 
[48,49]. If proven valid, this concept of a 
characteristic earthquake provides another example in 
which a dragon-king coexists with a power law 
distribution of smaller events. Others have countered 
that this bump disappears when removing the 
somewhat artificial partition of the data [50,51], so 
that the characteristic earthquake concept might be a 
statistical artifact. In this view, a particular fault may 

appear to have characteristic earthquakes, but the 
stress-shedding region, as a whole, behaves according 
to a pure scale-free power law distribution. Aki [52] 
presents a balanced view of this thorny issue of the 
existence or absence of characteristic earthquakes. The 
present discussion contributes by recognizing the 
relevance of material properties in shaping diverse 
possible seismicity regimes and calls for the 
re-examination of the characteristic earthquake 
hypothesis from this novel perspective. 

Actually, several theoretical models have been 
offered to support the idea that, in some seismic 
regimes, a power law distribution earthquake energies 
coexists with a characteristic earthquake regime (the 
dragon-king effect). Gil and Sornette [41] reported 
that this occurs when the characteristic rate for local 
stress relaxations is fast compared with the diffusion 
of stress within the system. The interplay between 
dynamical effects and heterogeneity has also been 
shown to change the Gutenberg-Richter behavior to a 
distribution of small events combined with 
characteristic system size events [53-56]. Huang et al 
carried [57] out simulations on a square array of blocks 
using static-dynamic friction and a cellular-automata 
approach. Their frequency–area density distribution 
statistics for model slip events also exhibit the 
coexistence of a power law and a bump associated with 
catastrophic slip events involving the entire system. 

On the empirical side, progress should be made 
in testing the characteristic earthquake hypothesis by 
using the prediction of the models to identify 
independently of seismicity those seismic regions in 
which the dragon-king effect is expected. This remains 
to be done [Ben-Zion, private communication, 2007]. 
 
 
4. Consequences of the dragon-king phenomenon 
for the predictability of catastrophic events 
 
The fact, that dragon-kings belong to a statistical 
population, which is different from the bulk of the 
distribution of smaller events, requires some 
additional amplification mechanisms involving 
amplifying critical cascades active only at special 
times. In 2002, I have presented a preliminary review 
[58] of the methods based on these insights to predict 
material rupture, turbulence bursts, abrupt changes in 
weather regimes, financial crashes and human birth. 

The key idea is that catastrophic events involve 
interactions between structures at many different 
scales that lead to the emergence of transitions 
between collective regimes of organization. One of the 
most important concepts developed in the theory of 
complex systems and in statistical physics is that big 
disruptions do not need large perturbations to occur. 
Most complex systems of interest exhibit qualitative 
changes of regimes in their characteristics and 
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dynamics upon the smooth variations of some 
“control” parameters or as a function of the network 
topology and/or metric. These qualitative changes are 
known under a variety of names, such as ruptures, 
phase transitions, bifurcations, catastrophes, tipping 
points. These are often at the source of the 
dragon-kings describe above. These bifurcations take 
engineers, practitioners and students by surprise, 
because of the ubiquitous tendency to extrapolate new 
behavior from past ones. Such inferences are 
fundamentally mistaken at phase transitions, since the 
new collective organization is in general completely 
different from the previous one. It is also wrongly 
considered as unrelated.  

Neglecting the fundamental relationships 
between dragon-kings and the pre-existing regimes 
would be a conceptual error with serious practical 
consequences. Methods that recognize the role of 
phase transitions allow us to unify different regimes 
under a synthetic framework, sometimes with 
encouraging potential for prediction of crises [58]. I 
briefly present two examples, in the field of material 
science and in financial economics. 
 
4.1. Prediction of material failure 
  
Fig 23 shows four plots of the acoustic emission 
recorded as the stress is increased linearly with time 
on pressure tanks embarked on rockets, which are 
made of multi-layer carbon composites. Using a 
theory of positive feedback of the present damage that 
impacts future damage [27,59,60], one can predict the 
final rupture to be a finite-time singularity with 
specific log-periodic power law (LPPL) precursors. 
The calibration of this model to data shows excellent 
results. This prediction system is now used routinely 
in the Aerospace industry in Europe to qualify the 
reliability of structures made of composite materials 
[61]. 
 

 
Fig.23 Illustration of the acoutic emission energy (vertical axis) 
recorded as the applied stress (horizontal axis) is increased on 
pressure tanks embarked on rockets, which are made of 
multi-layer carbon composites. Note the intermittent 
acceleration of the rate of acoustic emission energy that is well 

fitted by the LPPL model mentioned in the text. Reproduced 
from Johansen and Sornette [60]. 
 
 
4.2. Prediction of the end of financial bubbles 
 
Stock market crashes are momentous financial events 
that are fascinating to academics and practitioners 
alike. According to the standard academic textbook 
worldview that markets are efficient, only the 
revelation of a dramatic piece of information can 
cause a crash, yet in reality even the most thorough 
post-mortem analyses are typically inconclusive as to 
what this piece of information might have been. For 
traders and investors, the fear of a crash is a perpetual 
source of stress, and the onset of the event itself 
always ruins the lives of some of them. Most 
approaches to explain crashes search for possible 
mechanisms or effects that operate at very short time 
scales (hours, days or weeks at most). Other 
researchers have suggested market crashes may have 
endogenous origins (see Kaizoji and Sornette [62] and 
references therein). 

Associated with these questions is the problem of 
determining if there exist qualifying signatures in the 
statistical properties of time series of price returns that 
make crashes, and more generally large losses, 
different from the rest of the population? Section 3.3 
has answered positively by showing that crashes are 
outliers or “dragon-kings” (in the sense of forming a 
different statistical population with extreme 
properties). 

Financial markets constitute one among many 
other systems exhibiting a complex organization and 
dynamics with similar behavior. Over the last 15 years, 
we have developed an approach to challenge the 
standard economic view that stock markets are both 
efficient and unpredictable. The main concepts that are 
needed to understand stock markets are imitation, 
herding, self-organized cooperativity and positive 
feedbacks, leading to the development of endogenous 
instabilities. According to this theory, local effects 
such as interest raises, new tax laws, new regulations 
and so on, invoked as the cause of the burst of a given 
bubble leading to a crash, are only one of the 
triggering factors but not the fundamental cause of the 
bubble collapse. We propose that the true origin of a 
bubble and of its collapse lies in the unsustainable 
pace of stock market price growth based on 
self-reinforcing over-optimistic anticipation. As a 
speculative bubble develops, it becomes more and 
more unstable and very susceptible to any disturbance. 
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Fig.24 Seven well-known bubbles ending in a crash (not shown 
at the end of the time series) after an accelerated 
super-exponential increase fueled by positive feedback 
processes, in particular herding. Each time series has been 
rescaled vertically and translated to end at their corresponding 
crash time. The legends in color indicate the corresponding 
financial asset and the date is the year at which the bubble 
ended and the crash occurred.  
 

In a given financial bubble, it is the expectation 
of future earnings rather than present economic reality 
that motivates the average investor. History provides 
many examples of bubbles driven by unrealistic 
expectations of future earnings followed by crashes. 
The same basic ingredients are found repeatedly. 
Markets go through a series of stages, beginning with 
a market or sector that is successful, with strong 
fundamentals. Credit expands, and money flows more 
easily. (Near the peak of Japan's bubble in 1990, 
Japan's banks were lending money for real estate 
purchases at more than the value of the property, 
expecting the value to rise quickly.) As more money is 
available, prices rise. More investors are drawn in, and 
expectations for quick profits rise. The bubble expands, 
and then bursts. In other words, fuelled by initially 
well-founded economic fundamentals, investors 
develop a self-fulfilling enthusiasm by an imitative 
process or crowd behavior that leads to the building of 
castles in the air, to paraphrase Malkiel [63]. 
Furthermore, the causes of the crashes on the US 
markets in 1929, 1987, 1998 and in 2000 belongs to 
the same category, the difference being mainly in 
which sector the bubble was created: in 1929, it was 
utilities; in 1987, the bubble was supported by a 
general deregulation of the market with many new 
private investors entering the market with very high 
expectations with respect to the profit they would 
make; in 1998, it was an enormous expectation with 
respect to the investment opportunities in Russia that 
collapsed; before 2000, it was extremely high 
expectations with respect to the Internet, 
telecommunications, etc., that fuelled the bubble. In 
1929, 1987 and 2000, the concept of a “new 
economy” was each time promoted as the rational 

origin of the upsurge of the prices. 
 

 
Fig.25 Thirty years of the value of the Hong-Kong Heng-Seng 
index (linear-log scale). The straight red line represents the 
long-term average exponential growth of the Heng-Seng index 
at an approximately constant growth rate of 13.8%. But what is 
more interesting is that this market is never following this 
average exponential trend: it is accelerating super-exponentially 
and then crashing in a succession of bubbles and corrections 
that can be observed to occur at several scales. The 8 arrows 
indicate the times when a market peak was followed by a drop 
of more than 15% in less than three weeks. The 8 small panels 
at the bottom show the market price over 1-2 years preceding 
each of these 8 peaks and the corresponding fits with the LPPL 
model discussed in the text. Reproduced from Sornette and 
Johansen [32].  
 

Mathematically, large stock market crashes are 
the social analogues of so-called critical points studied 
in the statistical physics community in relation to 
magnetism, melting, and other phase transformation of 
solids, liquids, gas and other phases of matter [2]. This 
theory is based on the existence of a cooperative 
behavior of traders imitating each other which leads to 
progressively increasing build-up of market 
cooperativity, or effective interactions between 
investors, often translated into accelerating ascent of 
the market price over months and years before the 
crash. According to this theory, a crash occurs because 
the market has entered an unstable phase and any 
small disturbance or process may have triggered the 
instability. 

Think of a ruler held up vertically on your finger: 
this very unstable position will lead eventually to its 
collapse, as a result of a small (or absence of adequate) 
motion of your hand or due to any tiny whiff of air. 
The collapse is fundamentally due to the unstable 
position; the instantaneous cause of the collapse is 
secondary. In the same vein, the growth of the 
sensitivity and the growing instability of the market 
close to such a critical point might explain why 
attempts to unravel the local origin of the crash have 
been so diverse. Essentially, anything would work 
once the system is ripe. In this view, a crash has 
fundamentally an endogenous or internal origin and 
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exogenous or external shocks only serve as triggering 
factors. 

As a consequence, the origin of crashes is much 
more subtle than often thought, as it is constructed 
progressively by the market as a whole, as a 
self-organizing process with universal properties, as 
illustrated in Figs. 24 and 25. In this sense, the true 
cause of a crash could be termed a systemic instability. 
This leads to the possibility that the market anticipates 
the crash in a subtle self-organized and cooperative 
fashion. Our theory of collective behavior predicts 
robust signatures of speculative phases of financial 
markets, both in accelerating bubbles and decreasing 
prices. These precursory patterns have been 
documented for essentially all crashes on developed as 
well as emergent stock markets (see Sornette [64] for 
an exhaustive review). Accordingly, the crash of 
October 1987 is not unique but a representative of an 
important class of market behavior, underlying also 
the crash of October 1929 [65] and many others 
[66,64].  

The development of a given financial bubble 
releases precursory “fingerprints” observable in the 
stock market prices [32,64]. These fingerprints have 
been modeled by “log-periodic power laws” (LPPL), 
which are mathematical patterns associated with the 
mathematical generalization of the notion of fractals to 
complex imaginary dimensions [67]. We refer to the 
book of Sornette [64] for a detailed description and the 
review of many empirical tests and of several forward 
predictions. In particular, Johansen and Sornette 
predicted in January 1999 that Japan's Nikkei index 
would rise 50 percent by the end of that year, at a time 
when other economic forecasters expected the Nikkei 
to continue to fall, and when Japan's economic 
indicators were declining. The Nikkei rose more than 
49 percent during that time. Johansen and Sornette 
also successfully predicted several short-term changes 
of trends in the US market and in the Nikkei. 

Figs.26-29 show four predictions that were 
recently issued by our group at ETH Zurich. The first 
three have ended and were successful. At the time of 
writing, the last one on the Shanghai market is still 
running. 
 

 
Fig 26 (September 2007) Analysis with the LPPL model of the 
Hang Seng China Enterprises Index (HSCEI) which led to (i) a 
diagnostic of an on-going bubble and (ii) the prediction of the 
end of the bubble in early 2008. I communicated this prediction 
on 19 October 2007 at a prominent hedge-fund conference in 
Stockholm. The participants, all supposedly savvy investors 
and managers, told me that this was impossible because, in their 
opinion, the Chinese government would prevent any turmoil on 
the Chinese stock market until at least the end of the Olympic 
Games in Beijing (August 2008). About a month after my 
presentation, the HSCEI fell by 20% and the subsequent six 
months led to a depreciation of more than 65%. The inset 
shows the predicted time of the end of the bubble as a function 
of the position of the left-side of the running window over 
which the analysis is performed. Unpublished work performed 
with Prof. W.-X. Zhou. 
 
 

Fig 27 (May 2008) Time series of observed prices in USD of 
“NYMEX Light Sweet Crude, Contract 1” from the Energy 
Information Administration of the US Government (see 
http://www.eia.doe.gov/emeu/international/Crude2.xls) and 
simple LPPL fits (see text). The oil price time series was 
scanned in multiple windows. Also shown are dates of our 
original analysis in June 2008 and the actual observed peak oil 
price on 3 July 2008. Reproduced from Sornette et al. [68].  
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Fig 28 (19 February 2009) Our analysis has been performed on 
data kindly provided by Amjed Younis of Fortis Bank on 19 
February 2009. It consists of 3 data sets: credit default swaps 
(CDS); German bond futures prices; and spread evolution of 
several key euro zone sovereigns. The date range of the data is 
between 4 January 2006 and 18 February 2009. Our 
log-periodic power law (LPPL) analysis shows that credit 
default swaps appear bubbly, with a projected crash window of 
March-May, depending on the index used. German bond 
futures and European sovereign spreads do not appear bubbly. 
See report at http://www.er.ethz.ch/fco/CDS for more 
information. 
 
 

 
Fig.29 (10 July 2009) Amid the current financial crisis, there 
has been one equity index beating all others: the Shanghai 
Composite. Our analysis of this main Chinese equity index 
shows clear signatures of a bubble build up and we go on to 
predict its most likely crash date: July 17-27, 2009 (20%/80% 
quantile confidence interval). Reproduced from Bastiaensen et 
al. [69]. 
 

It is important to stress that our methodology 
allows us to predict the end of bubbles, but not the 
crashes per se [33-35]. It is often the case that a bubble 
bursts into a crash but this is not always the case. The 
end of a bubble may be a plateau or a slow decay. 

Of course, we are not able to predict stock 
markets with anything close to 100 percent accuracy - 
just as weather forecasting cannot say with absolute 

certainty what the weekend weather will be - but our 
predictions will become more accurate as we refine 
our methods, as presently undergoing with the new 
Financial Crisis Observatory [70]. The Financial 
Crisis Observatory is a scientific platform aimed at 
testing and quantifying rigorously, in a systematic way 
and on a large scale the hypothesis that financial 
markets exhibit a degree of inefficiency and a 
potential for predictability, especially during regimes 
when bubbles develop. 

Stock market crashes are often unforeseen by 
most people, especially economists. One reason why 
predicting complex systems is difficult is that we have 
to look at the forest rather than the trees, and almost 
nobody does that. Our approach tries to avoid that trap. 
From the tulip mania, where tulips worth tens of 
thousands of dollars in present U.S. dollars became 
worthless a few months later, to the U.S. bubble in 
2000, the same patterns occur over the centuries. 
Today we have electronic commerce, but fear and 
greed remain the same. Humans remain endowed with 
basically the same qualities today as they were in the 
17th century. 

Our methodology provides an original framework 
to analyze the origin and consequences of the financial 
crisis of 2008 [71], which started with an initially 
well-defined epicenter focused on mortgage backed 
securities (MBS), and which has been cascading into a 
global economic recession, whose increasing severity 
and uncertain duration has led and is continuing to lead 
to massive losses and damage for billions of people. 
Sornette and Woodard [71] have presented evidence and 
have articulated a general framework that allows one to 
diagnose the fundamental cause of the unfolding 
financial and economic crisis: the accumulation of 
several bubbles and their interplay and mutual 
reinforcement has led to an illusion of a “perpetual 
money machine” allowing financial institutions to 
extract wealth from an unsustainable artificial process. 
Taking stock of this diagnostic, Sornette and Woodard 
[71] found that many of the interventions to address the 
so-called liquidity crisis and to encourage more 
consumption are ill-advised and even dangerous, given 
that precautionary reserves were not accumulated in the 
“good times” but that huge liabilities were. The most 
“interesting” present times constitute unique 
opportunities but also great challenges, for which a few 
recommendations can be offered. 

Bubbles and crashes are ubiquitous to human 
activity: as humans, we are rarely satisfied with the 
Status Quo; we tend to be over-optimistic with respect 
to future prospects and, as social animals, we herd to 
find comfort in being (right or wrong) with the crowd. 
This leads to human activities being punctuated by 
bubbles and their corrections. The bubbles may come 
as a result of expectations of the future returns from 
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new technology, such as in the exploration of the solar 
system, of the human biology or new computer and 
information technologies. I contend that this trait 
allows us as a species to take risks to innovate with 
extraordinary successes, which would not arise 
otherwise [72,73]. Thus, bubbles and crashes, the 
hallmark of humans, are perhaps our most constructive 
collective process. But they may also undermine our 
quest for stability. We thus have to be prepared and 
adapted to the systemic instabilities that are part of us, 
part of our collective organization, ... and which will 
no doubt recur again perhaps with even more violent 
effects in the coming decade. 
 
 
5. Conclusions 
 
We have presented supporting evidence for the 
concept that meaningful outliers (called 
“dragon-kings”) coexist with power laws in the 
distributions of event sizes under a broad range of 
conditions in a large variety of systems. These 
dragon-kings reveal the existence of mechanisms of 
self-organization that are not apparent otherwise from 
the distribution of their smaller siblings.  
 This leads to two consequences, one pessimistic 
and the other one more optimistic. The first one is the 
unavoidable evidence that extreme events occur much 
more often than would be predicted or expected from 
the observations of small, medium and even large 
events. Thus, catastrophes and crises are with us all 
the time. On the other hand, we have argued that the 
dragon-kings reveal the presence of special 
mechanisms. These processes provide clues that allow 
us to diagnose the maturation of a system towards a 
crisis, as we have documented in a series of examples 
in various systems. 
 We have emphasized the use of the concept of a 
“phase transition – bifurcation – catastrophe – tipping 
– point,” which is crucial to learn how to diagnose in 
advance the symptoms of the next great crisis, as most 
crises occur under only smooth changes of some 
control variables, without the need for an external 
shock of large magnitude.  
 The validation of the ideas proposed here is 
on-going with the creation of the Financial Crisis 
Observatory [70] using the method of Sornette et al. 
[74,74]. 
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